Protection against zinc toxicity by metallothionein and zinc transporter 1.

نویسنده

  • Richard D Palmiter
چکیده

Cells protect themselves from zinc toxicity by inducing proteins such as metallothionein (MT) that bind it tightly, by sequestering it in organelles, or by exporting it. In this study, the interplay between zinc binding by MT and its efflux by zinc transporter 1 (ZnT1) was examined genetically. Inactivation of the Znt1 gene in baby hamster kidney (BHK) cells that do not express their Mt genes results in a zinc-sensitive phenotype and a high level of "free" zinc. Restoration of Mt gene expression increases resistance to zinc toxicity approximately 4-fold, but only slightly reduces free zinc levels. Expression of ZnT1 provides greater protection (approximately 7-fold) and lowers free zinc substantially. Selection for zinc resistance in BHK cells that cannot synthesize either MT or ZnT1 is ineffective. However, parental BHK cells that grow in high concentrations (>500 microM) of zinc can be selected; these cells have amplified their endogenous Znt1 genes. The Znt1 gene is also amplified in zinc-resistant mouse cells that cannot induce their Mt genes. However, if Mt genes can be expressed, then they are preferentially amplified. Thus, both ZnT1 and MT genes contribute to zinc resistance in BHK cells, whereas ZnT1 plays a larger role in regulating free zinc levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A role for the Drosophila zinc transporter Zip88E in protecting against dietary zinc toxicity

Zinc absorption in animals is thought to be regulated in a local, cell autonomous manner with intestinal cells responding to dietary zinc content. The Drosophila zinc transporter Zip88E shows strong sequence similarity to Zips 42C.1, 42C.2 and 89B as well as mammalian Zips 1, 2 and 3, suggesting that it may act in concert with the apically-localised Drosophila zinc uptake transporters to facili...

متن کامل

Biochemical and Molecular Roles of Nutrients Metallothionein Knockout and Transgenic Mice Exhibit Altered Intestinal Processing of Zinc with Uniform Zinc-Dependent Zinc Transporter-1 Expression

A role for metallothionein in intestinal zinc absorption has been the subject of considerable debate. If metallothionein affects zinc absorption, then those factors that induce metallothionein synthesis (e.g., heavy metals, hormones) should alter zinc absorption and homeostasis. The present studies used metallothionein transgenic mice (overexpressing) and metallothionein knockout mice (no expre...

متن کامل

Metallothionein knockout and transgenic mice exhibit altered intestinal processing of zinc with uniform zinc-dependent zinc transporter-1 expression.

A role for metallothionein in intestinal zinc absorption has been the subject of considerable debate. If metallothionein affects zinc absorption, then those factors that induce metallothionein synthesis (e.g., heavy metals, hormones) should alter zinc absorption and homeostasis. The present studies used metallothionein transgenic mice (overexpressing) and metallothionein knockout mice (no expre...

متن کامل

[Molecular mechanism involved in chromium(VI) toxicity].

Chromium exists in many different oxidation states in the environment, Cr(VI) and Cr(III) being the most stable forms. Chromium has been known for over 100 years to be a human carcinogen. The greatest risk of cancer from chromium exposure is associated with Cr(VI). Cr(VI) enters cells via the sulfate anion transporter system and is reduced to intermediate oxidation states, such as Cr(V) and Cr(...

متن کامل

Gene expression analysis of gallium-resistant and gallium-sensitive lymphoma cells reveals a role for metal-responsive transcription factor-1, metallothionein-2A, and zinc transporter-1 in modulating the antineoplastic activity of gallium nitrate.

Several clinical trials have shown gallium nitrate to be an active agent in the treatment of lymphoma. Whereas gallium is known to target cellular iron homeostasis, the basis for lymphoma cell resistance to gallium is not known. Understanding mechanisms of resistance may suggest strategies to enhance the clinical efficacy of gallium. In the present study, we used a focused DNA microarray to com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 14  شماره 

صفحات  -

تاریخ انتشار 2004